

Exercise testing of athletes

Dr Michael Papadakis

Clinical Lecturer in Cardiology, St George's University of London Chair-elect of the Sports Cardiology Nucleus, EACPR

michael.papadakis@sgul.ac.uk

Objectives

- Exercise stress testing in athletes
 - What are the information can we obtain?
 - Cardiopulmonary exercise testing
- Role of exercise testing in different conditions
 - Cardiomyopathies
 - Ion-channelopathies
 - Accessory pathway
 - Post-exertional syncope
 - Coronary artery anomalies
 - Ischaemic heart disease (Master athletes)

Different modes of exercise testing

- Advantages of treadmill
 - Attain higher VO2
 - More functional
- Advantages of cycle ergometer
 - Cheaper
 - Requires less space
 - Less ECG noise
 - Easier BP recording, blood draw, ECHO
 - Little training needed
 - Safer
 - Direct power calculation
 - Independent of weight
 - Holding bars has no effect

Garbage in - Garbage out

- Good skin preparation
- Placement of your leads
- Good ECG trace
 - PR isoelectric line
- Test BP cuff
- Clear instructions to the athlete

Value of exercise stress testing

- Exercise duration & MET (surrogate to fitness)
- Provoke symptoms
 - Angina, Shortness of breath, palpitations, syncope
- ST-segment depression
- BP response to exercise
 - Hypotension or hypertension
- Chronotropic incompetence
- Heart rate recovery
- Arrhythmias
- Accessory pathways

Cardiopulmonary exercise testing

Variables

- VO2max/VO2 peak
- Anaerobic threshold
- Peak heart rate
- Heart rate reserve
- Peak work
- O2 pulse (VO2/HR)
- Ventilatory reserve
- Respiratory frequency
- VE/VCO2 (at AT)
- VD/VT
- P(A-a)O2

Wasserman 9-panel plot

Performing an exercise stress test

Exercise most athletes to volitional exhaustion

- 12-lead ECG and BP recordings every minute
- Continue recording 3-5 mins into recovery
- When to stop an exercise test!
 - Athlete becomes symptomatic
 - ECG ischaemic changes and arrhythmias
 - Systolic BP drop (>20mmHg)

Hypertrophic cardiomyopathy (HCM)

Contribution of ETT in HCM

Utilising CPET to distinguish HCM vs athlete's heart

Peak VO2 >50ml/kg/min or >120% predicted

Sharma S et al. J Am Coll Cardiol 2000;36:864-870

Risk stratification in HCM

NSVT/VT

Holter

Arrhythmogenic right ventricular cardiomyopathy

Diagnosis of ARVC

Contribution of ETT in ARVC

Symptoms

Family history

Impaired RV function

Impaired LV function

Epsilon waves

NSVT/VT

Asymptomatic

Voltage criteria for LVH on ECG

LV dilatation and preserved function

Good RV function

RV dilatation, Inverted T waves V1-V3
Ventricular extrasystoles of LBBB morphology

Risk pyramid in ARVC

Unheralded syncope Young age/Early disease progression

Reduced RV systolic function
Asymptomatic sustained VT on antiarrhythmics

Serial exercise tests to monitor response to treatment

- 33-year-old, Caucasian, tri-athlete
- Palpitations and paraesthesia on exertion
- Diagnosis of ARVC
- Commenced athlete on beta-blocker

Long-QT syndrome - Schwartz score

Probability of LQTS

≤1: low

1.5–3: intermediate

≥3.5: high

Criterion		Points
ECG		
QTC (ms)	>480	3
	460-479	2
	450-459 (males)	1
QTc ≥480ms at 4 th min of recovery from ETT		1
Torsades de pointes		2
T-wave alternans		1
≥3 leads notched T-waves		1
Bradycardia for age		0.5
Clinical History		
Syncope	With Stress	2
	Without Stress	1
Congenital Deafness		0.5
Family history with definite LQTS		1
Unexplained sudden death in 1 st -degree family member <30 years		0.5

Ventricular tachycardia during exercise testing

Paradoxical prolongation of the QT interval

Cathecholaminergic Polymorphic Ventricular Tachycardia (CPVT)

- Genetic disorder (dominant or recessive)
- Disruption of the intracellular calcium regulation
- Presentation
 - Sudden death or syncope on exertion
 - Palpitations on exertion
- Polymorphic ventricular tachycardia
- Treatment
 - β-blockers
 - ICD

Exercise testing is the primary diagnostic tool

The "slow" heart rate

- Athletes exhibit
 - Increased vagal tone
 - Reduced intrinsic sinus pacemaker rate
 - Reverses on detraining
- More likely to exhibit
 - Sinus bradycardia
 - Junctional rhythm
 - □ 1st-degree heart block (PR-interval ≥200ms)
 - Mobitz type-I (10% of athletes)
- Mobitz type-II and 3rd-degree heart block
 - Rare and shouldn't be considered a normal finding

17-year-old swimmer

Nodal versus infra-Hissian AV block

	Nodal AV Block	Infra-Hissian AV Block
Level of block	AV Node (Extrinsic/Autonomic)	Infranodal (Intrinsic)
Association	Documented episodes 1 st degree & Mobitz I, occurs with sinus brady	Broad QRS, abnormal axis (interventricular conduction delay)
Response to increased sinus rate	Increased conduction	Increased block
Environmental precipitants	Vagal	None
	Physiological	Pathological

Post-exertional syncope

- Exercise testing can make the diagnosis
- Benign
 - Augmented vagal tone in young athletes
 - Increased parasympathetic release post exertion
 - Post-exercise peripheral vasodilation

Is all post-exertional syncope benign?

- Genetic sodium ion channel disorder
- Ventricular fibrillation
- Exercise is NOT considered to be a risk factor
- Most sudden deaths at rest/during sleep
- 10% of deaths occur post-exertion

- 56-year-old referred after the sudden death of his son
 - Exercising on a regular basis

ST-segment elevation on recovery of ETT as a predictor of cardiac events in BrS

- 93 patients with BrS
 - 22 documented VF, 35 syncope, 36 asymptomatic
- 102 healthy controls
- 37% of BrS but none of the controls
 - exhibited ST elevation 1-4 min into recovery
 - □ ≥0.05 mV in V1 to V3
- During 76 \pm 38 months of follow-up
 - 44% with ST elevation vs. 17% without exhibited VF (p=0.004)

ST-segment elevation on recovery of ETT as a predictor of cardiac events in BrS

- Previous episodes of VF
- SCN5a mutation
- Spontaneous type-1 pattern
- Late potential
- Inducibility in EPS
- Family history of SCD or BrS

HR 3.25; 95% CI: 1.4-7.3, p=0.007

- Important predictor amongst asymptomatic patients
 - 20% with ST elevation vs. 0% without exhibited VF (p=0.04)

Makimoto H et al. J Am Coll Cardiol 2010;56:1576-1584

Assessment of ventricular arrhythmias

- Utilised to assess significance of ventricular ectopy
- Data from general & athletic populations indicate
 - Athletes with increased VE/complexity during exercise are more likely to exhibit cardiac pathology
 - General population

Jouven X et al. N Engl J Med 2000;343:826-833

Risk stratification in WPW

Low-risk features

- Non-invasive
 - Intermittent pre-excitation
 - Block in the accessory
 - During exercise
 - During drug challenge

Invasive

 Anterograde refractory period of the accessory pathway >270ms

Sudden block in the accessory pathway during exercise testing

- 15-year-old, Afro-Caribbean, male, football player
- Three episodes of "pressure like" chest discomfort on exertion
- Associated with dizziness, No syncope
- No PMH or FH of note
- Normal examination
- 12-lead ECG
- Normal ECHO

Exercise stress testing

- Exercised for 13 minutes and 30 secs (Completed Stage 4 Bruce protocol)
- Max HR 181 (88% age predicted)
- BP 122mmHg \Rightarrow 170mmHg
- No ST segment shift or arrhythmias
- Asymptomatic

PULMONARY ARTERY

Coronary artery anomalies

- A coronary artery originating from the wrong aortic sinus occurs in 1%
- Majority of individuals asymptomatic
- Most deaths during exercise & <30 years of age
 - One of the commonest causes of SCD in athletes
- High risk anomalies
 - Arising from opposite coronary sinus (Left>Right)
 - Course running between great vessels

Exercise testing and ischaemic heart disease

- Veteran athletes
- Referees, coaches, other personnel
- Amateur athletes
 - Master athletic federation
 - Leisure-time physical activity

Limitations of exercise testing as a screening tool for ischaemic heart disease

- Substantial number of false results
 - Particularly if asymptomatic, low risk, female
- NICE guidelines for individuals with CP
- Use of ETT recommended ONLY in patients with established CAD
 - CT calcium score ± CTCA (10%-29%)
 - Functional imaging (30%-60%)
 - Coronary angiography (61%-90%)

Prognostic Value of ETT

- □Development of angina
- □ST-segment depression
- **DExercise** duration
- □Exercise hypotension or hypertension
- □Chronotropic incompetence
- □Heart rate recovery
- □Ventricular ectopy

Two exercise tests

VARIABLE	Athlete A	Athlete B
Resting BP (mmHg)	120/80	120/80
Resting heart rate (beats/min)	66	66
Peak heart rate (beats/min)	180	180
Chest pain during exercise	NO	NO
Exercise ST-segment depression (mm)	1	1
Duration (minutes, Bruce protocol)	22	9
Limiting symptoms	Fatigue	Dyspnoea
Peak exercise BP (mmHg)	210/70	140/60
Heart rate 1 min into recovery (beats/min)	138	162

Conclusion

- Exercise testing in athletes can be utilised to:
 - Assess & improve cardiopulmonary fitness
 - Evaluation of athletes with cardiac symptoms
 - Diagnostic purposes
 - Risk stratification of athletes with established disease
 - Monitoring/Response to treatment

False reassurance

- Young athlete with exertional chest pain and syncope
- Accessory pathways
- Pseudonormalisation of T-waves
- Endurance athletes